FACTORING TRINOMIALS OF THE FORM $x^2 + bx + c$, WHERE c < 0

• Before doing this exercise, you may want to study: Basic Concepts Involved in Factoring Trinomials Factoring Trinomials of the form $x^2 + bx + c$, where c > 0

(more mathematical cats)

Here, you will practice factoring trinomials of the form $x^2 + bx + c$, where b and c are integers, and c < 0. That is, the constant term is negative.

Recall that the *integers* are: $\dots, -3, -2, -1, 0, 1, 2, 3, \dots$

As discussed in <u>Basic Concepts Involved in Factoring Trinomials</u>, you must first find two numbers that add to b and that multiply to c, since then:

$$x^2+bx+c = x^2+(\overbrace{f+g})x+\overbrace{fg}^{=c} = (x+f)(x+g)$$

Since c is negative in this exercise, one number will be positive, and the other will be negative. (How can two numbers multiply to give a negative result? One must be positive, and the other negative.) That is, the numbers will have different signs.

When you <u>add numbers that have different signs</u>, then *in your head you actually do a subtraction problem*.

For example, to mentally add (-5) + 3, in your head you would compute 5 - 3, and then assign a negative sign to your answer.

Think of it this way: Start at zero on a number line. Walk 5 units to the left, and 3 units to the right. You end up at -2.

You walked farther to the left than you did to the right, so your final answer is negative.

The sign of b (the coefficient of the x term) determines which number will be positive, and which will be negative:

If b > 0, then the bigger number (the one farthest from zero) will be positive.

If b < 0, then the bigger number (the one farthest from zero) will be negative.

In other words, the *biggest* number takes the sign (plus or minus) of b.

These results are summarized below:

FACTORING TRINOMIALS OF THE FORM $x^2 + bx + c$, c < 0

- Check that the coefficient of the square term is 1.
- Check that the constant term (c) is negative.
- It's easier to do mental computations involving only positive numbers. So, you will initially ignore all minus signs and just work with the numbers |b| and |c|.
- Find two numbers whose DIFFERENCE is |b| and whose PRODUCT is |c|.

That is, find two numbers that *subtract* to give |b| and that *multiply* to give |c|.

Now (and only now), you'll use the actual plus-or-minus sign of b.
If b > 0, then the bigger of your two numbers is positive; the other is negative.

If b < 0, then the bigger of your two numbers is negative; the other is positive.

That is, the *biggest* number takes the sign (plus or minus) of b.

- Use these two numbers to factor the trinomial, as illustrated in the examples below.
- Be sure to check your answer using FOIL.

EXAMPLES:

Question: Factor: $x^2 + 5x - 6$

Solution: Thought process:

Is the coefficient of the x^2 term equal to 1? Check!

Is the constant term negative? Check!

Find two numbers whose difference is 5 and whose product is 6.

That is, find two numbers that subtract to give $\,5\,$ and that multiply to give $\,6\,$.

The numbers 1 and 6 work, since 6 - 1 = 5 and $6 \cdot 1 = 6$.

Since the coefficient of x is positive, the bigger number (6) will be positive, and the other will be negative.

The desired numbers are therefore 6 and -1.

Then,

$$x^2 + 5x - 6 = x^2 + (6 + (-1))x + 6 \cdot (-1) = (x+6)(x-1)$$

Check:
$$(x+6)(x-1) = x^2 - x + 6x - 6 = x^2 + 5x - 6$$

Question: Factor: $x^2 - 5x - 6$

Solution: Thought process:

Is the coefficient of the x^2 term equal to 1? Check!

Is the constant term negative? Check!

Find two numbers whose difference is 5 and whose product is 6.

That is, find two numbers that subtract to give 5 and that multiply to give 6.

The numbers 1 and 6 work, since 6 - 1 = 5 and $6 \cdot 1 = 6$.

Since the coefficient of x is negative, the bigger number (6) will be negative, and the other will be positive.

The desired numbers are therefore -6 and 1.

Then,

$$x^2 - 5x - 6 = x^2 + ((-6) + 1)x + (-6) \cdot 1 = (x - 6)(x + 1)$$

Check:
$$(x-6)(x+1) = x^2 + x - 6x - 6 = x^2 - 5x - 6$$

Question: Factor: $x^2 + x - 1$

Solution:

There are no integers whose difference and product are both 1.

Thus, $x^2 + x - 1$ is not factorable over the integers.